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1. Introduction
Combined convection in rotating spherical annuli is of great interest in both
engineering design and geophysics. The problem can be divided into two cases.
The first is the case in which the gravitational field acts in radial direction and
the second is that in which the gravitational field acts in the direction parallel to
that of the axis of rotation. Although seemingly a minor change, the two
problems are entirely different except in the forced convection limit. The former
model is applicable to some geophysical or meteorological situations. The latter
model is applicable to such physical flows as a rotating sphere viscometer
(Bestman, 1978).

In the past several studies concerning both cases were carried out. Pedlosky
(1969) studied the steady motion of a thermally stratified fluid in a narrow
spherical annulus with radial gravitational field. Douglass et al. (1978) obtained
an approximate solution for the same problem using a modified Galerkin
technique for moderate Reynolds numbers and several angular velocity ratios.
The effects of different ratios of radii spheres on combined convection are
shown in Douglass et al. (1979) in which a fourth order regular perturbation
expansion method in powers of Reynolds number is used to solve the governing
equations. A numerical investigation is performed by Raghavarao and Srinivas
(1995a) for a similar problem using a parametric spline function approximation
to solve the governing Navier Stokes and energy equations.

An early study of combined convection flows in concentric spherical annulus
with the gravitational field in axial direction is that of Riley and Mack (1972).
They used a lower order perturbation expansion in powers of Reynolds number
to obtain the approximate solution to the governing equations. Maples et al.
(1973) studied the combined convection in spherical annulus experimentally. In
their study only the inner sphere is allowed to rotate and Nusselt number
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dependence on Grashof and Reynolds numbers is presented graphically.
Reynolds numbers ranged upward from 3,000. Another analytical study is by
Dallman and Douglass (1980) in which a partial spectral expansion method is
used to solve the governing equations.

The details of the spline function approximation and its applications to
convective flows can be found in Lauriat and Altimir (1985), Wang (1987) and
Wang et al. (1990). In Lauriat and Altimir (1985), spline alternating direction
implicit (SADI) method and in Wang (1987) and Wang et al. (1990) spline
method of fractional steps (SMFS) was used to solve the governing equations.
Both the methods depend on cubic spline. The parametric spline function
approximation was earlier used by Jain and Aziz (1981) to solve ordinary and
partial differential equations occurring in applied mechanics. Raghavarao and
Srinivas (1995b) applied this technique to obtain the approximate solutions for
the inviscid flow past a circular cylinder and Stokes’ flow past a sphere. Later, it
is applied to obtain the approximate solution for thermal convection in rotating
concentric spherical annulus with a uniform radial gravitational field
(Raghavarao and Srinivas, 1995a).

The present study is devoted to a numerical investigation of the combined
convection of the flow between two concentric rotating spheres with axial
gravitational field using a parametric spline function approximation. The
advantage of spline function approximation over usual finite difference scheme
(FDS) is in FDS the non-linear terms in the governing equations are
approximated by the upwind difference scheme which is of first order accuracy,
whereas, in spline function approximation the first order derivatives in the non-
linear terms are eliminated by second order derivatives whose values are
calculated. Both the elimination of first order derivatives and calculation of
values of second order derivatives is done by using suitable spline relations and
the approximation gives second order accuracy. The computations are done for
different values of Reynolds number, Prandtl number and angular velocity
ratios.

2. Governing equations
Here the steady combined thermal convection of a viscous Boussinesq fluid
contained between two concentric spheres is considered. The spheres are
considered to be at different temperatures and are in rotation with different
angular velocities about a common vertical axis. A uniform gravitational field
acts on the fluid in the direction parallel to the axis of rotation. The system of
equations describing the flow field for the combined convection situation are the
dimensionless Navier-Stokes’ equations and the energy equation. These
equations in terms of the stream function in the meridian plane ψ, an angular
momentum function Ω, and temperature T are as follows:

(1)
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(2)

(3)

where

and ∇ 2 is the Laplacian operator in spherical polar coordinates.
The dimensionless parameters are defined as Re = ω0 R2

2/ν, Gr = g0β(T2 –
T1) R2

3/ν and Pr = ν/α.
Equation (2) can be split into two coupled equations as:

(4)

(5)

In equation (4), ζ1 is the vorticity. The solutions have only axisymmetry and the
ranges of independent variables are η ≤ r ≤ 1 and 0 ≤ θ ≤ π. Here η = R1/R2,
where R1 and R2 are the radii of the inner and outer spheres respectively.

The boundary conditions which complete the formulation of the problem are
as follows:



HFF
8,6

676
where µ∼ = ω2/ω1, ω1 and ω2 are the angular velocities of the inner and outer
spheres respectively.

The boundary conditions on ζ are:

and ζ = 0 on the lines of symmetry.
These boundary conditions on ζ are obtained by taking a third degree

polynomial approximation to ψ and using the definition of ζ and zero velocities
on the surfaces of the spheres.

3. Method of solution
Approximate solutions to the governing equations are obtained by parametric
spline function approximation. The parametric spline function is defined as
follows (Jain and Aziz, 1981).

A function S(t), of class C2(a,b) which interpolates y(t) at the knots {ti}
depends on a parameter p > 0, and reduces to a cubic spline in the interval (ti–1, ti)
as p → 0, is termed as a parametric spline function and is given by:

(6)

where w = h√
–
p.

The additional spline relations that are useful in solving the governing
equations are:
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(7)

(8)

(9)

where

Here we take the parametric spline function approximation in r-direction and
finite differences (central differences) in θ-direction. The intervals are taken as
h = 0.02 in r-direction and k = π/45 in θ-direction. R1 and R2 are taken as 0.5 and
1.0 respectively. Now equations (1), (4), (5) and (3) can be written as:

(10)

(11)
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(13)

where Pi, j, Qi, j, Ri, j and Si, j are the second order partial derivatives of ψ, Ω, ζ,
and T respectively with respect to r at the mesh point (ri, θj). Here i = 1, 2, …,
N – 1, j = 1, 2, …, L – 1 and Nh = 0.5, Lk = π.

The above equations, along with the corresponding spline relations obtained
from (7) are solved simultaneously with conditions for P, Q, R and S on the
bounding surfaces derived from the governing equations using the boundary
conditions for the flow parameters on the surfaces of the spheres. The
expressions for P, Q, R and S are:

(14)

(15)

(16)

(17)

(18)
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(19)

(20)

(21)

The initial values for P, Q, R, S and ψ, Ω, ζ, and T are taken as zeros. By using
Gauss-Seidel method the equations (10)-(13) with conditions (14)-(21) are solved
for Qi,j, Pi,j, Ri,j and Si,j. Subsequently these values are used to solve, by Gauss-
Siedel method, for Ωi,j, ψi,j, ζi,j and Ti,j using the corresponding spline relations
from the equation (7).

This completes one iteration. The iterative process continued till |F (n+1) –
F(n)| < 10–6, where F = ψ, Ω, ζ, T, P, Q, R and S.

4. Discussion of results
There are five dimensionless parameters governing the flow and heat transfer
in the rotating annulus viz. η, µ∼ , Re, Gr/Re2 and Pr. Here η and µ∼ are determined
by the geometry and boundary conditions. Re and Gr/Re2 are measures of
dynamical effects and Pr depends on the fluid properties. The ratio of the radii
η is fixed as 0.5 throughout the discussion while the other parameters are
varied to account for their influence on the flow. A computer program is
developed to evaluate ψ, Ω, ζ, and T.

There would be no fluid motion in the annulus, if the bounding spheres are
stationary and the temperature distribution is simply due to conduction. In
reality there will be still motion (secondary) of the fluid due to natural
convection and the temperature distribution would be due to conduction and
also due to natural convection. Any rotation of the bounding spheres causes a
primary flow (ω) around the axis of rotation, whereas the secondary flow (ψ)
has its origin in two different mechanisms. One is the centrifugal acceleration of
the fluid generated by the primary flow and the other is the buoyancy force
caused by the density variations due to non-uniform temperatures in the fluid.
In the first extreme (i.e. given by either isothermal flow or forced convection) the
flow pattern is well established as being both axially and equatorially
symmetric. The other extreme of natural convection in spherical annulus has
only axisymmetry. It is, therefore, reasonable that these two mechanisms
together contribute to form flows with the characteristics of both extremes.

The suitable measure of the relative importance of these mechanisms is
Gr/Re2. The forced convection case is given by Gr/Re2 = 0 which uncouples the
equations (2) and (3).
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Calculations are made for:

• different values of Re viz. Re = 50, 100, 150 for Gr/Re2= 1, µ∼ = 2, Pr = 1 to
show the effects of Re;

• Re = 50, Gr/Re2 = 1, µ∼ = 2, Pr = 10, to show the effects of Pr; and

• Re = 50, Gr/Re2 = 0, 1/10, 1/3 and µ∼ = –1/3, Pr = 1 to show the effects of
both Gr/Re2 and the angular velocity ratios of the spheres.

The first effect to be discussed is that of increasing Re. The other parameters
are taken as Gr/Re2 = 1, Pr = 1 and µ∼ =2. µ∼ = 2 implies that both the spheres are
rotating in the same direction and the outer sphere is rotating with a velocity
twice that of the inner sphere. Changes in secondary flow in response to
increasing Re are shown in right side of Figure 1(a) to 1(c). As it is seen the
secondary flow consists of “kidney” shaped eddy and the centrifugal
accelerations due to rotation in an enhanced counterclockwise circulation of the
eddy. As Re increases this effect increases. The result for Re = 50 is in good
comparison with that of Dallman and Douglass (1980), whereas the secondary
flow streamline patterns and temperature distribution results are not available
for comparison for Re = 100, 150.

Isotherms for the same parameters are shown in Figure 1 (left side). At Re =
50, isotherms (consist of lines of constant T ) are pushed slightly towards the
outer sphere in the southern hemisphere and towards the inner sphere in the
northern hemisphere. This trend significantly increases as Re increases. This
behavior is explained in terms of the secondary flow results as follows: as the
cold fluid moves upward from its coldest point near the south pole, it is heated
by the warm outer sphere. This tends to produce large thermal gradients at the
outer sphere near the north pole. The fluid gets heated continuously as it moves
toward the north pole. Then, in a region near the north pole, a relatively large
amount of warm fluid is formed. This is reflected in the isotherms being more
concentrated near the inner sphere. A cooling phenomenon similar to that for
the outer sphere occurs as the warm fluid sweeps along the cool inner sphere
which ultimately causes a relatively large area of cold fluid near the south pole
to develop.

Distribution of angular velocity is shown in Figure 2 for the same set of
parameters. Unlike for small values of Re, given in Riley and Mack (1972), when
Re = 50, the contours of constant angular velocity are not concentric circles, but
they are distorted and in some regions angular velocity of the fluid is higher
than that of the boundaries. Although it seems to be incorrect at first sight, this
behavior can be shown to be possible by referring to the isotherms of Figure 1
and conservation of angular momentum. From isotherms shown in Figure 1, it
is seen that as Re increases, relatively larger regions of warm and cold fluid
regions form near the north and south poles respectively as compared to the
low Re results. Being more dense, the colder fluid rotates slower than the forced
convection flow. On the other hand, the warm less-dense fluid must rotate faster
and in some regions with more angular velocities than boundaries. It is
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Figure 1.
Isotherms and

secondary flow (–104ψ)
for ~µ = 2, η = 0.5,

Gr/Re2 = 1, Pr = 1:
(a) Re = 50; (b) Re = 100;

(c) Re = 150 
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observed that the warm fluid rotates at over 116 and 128 per cent of the speed
of the outer sphere for Re = 100 and 150 respectively.

The second effect to be studied is due to the Prandtl number Pr = ν/α. Since
the Prandtl number depends on the fluid properties only, changing Pr means
changing the working fluid. A large value of Pr means that the fluid can diffuse
more momentum than energy. Thus the velocity gradients are smaller than the
thermal gradients. The converse follows for small values of Pr (< 1) and for Pr
= 1 both the gradients are of the same magnitude. The secondary flow

Figure 2.
Angular velocity
distributions for ~µ = 2,
η = 0.5, Gr/Re2 = 1,
Pr = 1: (a) Re = 50;
(b) Re = 100; (c) Re = 150;
(d) Re = 50 and Pr = 10
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streamline pattern and temperature distribution for Pr = 10 are shown in
Figure 3. It is observed that for Pr = 10, a large region of the southern
hemisphere is filled by very cold fluid forming a thermal boundary layer along
the southern part of the warm outer sphere. A less pronounced large region of
warm fluid occupies the northern inner sphere. From Figure 1(a), it is seen that
for Pr = 1, these segregated regions are only slightly established. In both cases,
the secondary flow causes the fluid to be swept upward along the warm outer
sphere and downward along the cold inner sphere. Also, the larger Pr is more
resistant to changing its temperature, causing large warm and cold regions to
persist in the annulus.

The final effect is that of the ratio Gr/Re2, which shows the relative effect of
increasing gravitational forces. The calculations are made for η = 0.5, µ∼ = – 1/3,
Pr = 1, Re = 50, Gr/Re2 = 0, 1/10, 1/3, 1. µ∼ = –1/3 implies that both the spheres
are rotating , the inner sphere is rotating three times faster than the outer sphere
and in the opposite direction. Isotherms and secondary flow streamlines are
given in Figure 4. Figure 4(a) shows the result for Gr/Re2 = 0, i.e. the buoyancy
forces are zero which is the case of forced convection. The secondary flow is
driven by the centrifugal force field established by the differential rotation of the
two spheres. This flow has equatorial symmetry. The shear driven secondary
flow consists of two counter rotating torodial eddies. The eddy near the inner
sphere has a strong counterclockwise circulation; the other eddy has a slightly
weaker clockwise circulation. The differences in the strength and direction of
the flow in these convective motions reflect the fact that the inner sphere is
rotating three times as fast as the outer sphere and in the opposite direction.
The introduction of a slight buoyancy force (Gr/Re2=1/10, Figure 4(b)), alters
the secondary flow and causes the equatorial symmetry to vanish by combining

Figure 3.
Isotherms and

secondary flow (–104ψ)
for ~µ = 2, η = 0.5,

Gr/Re2 = 1, Re = 50;
Pr = 10
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the two counterclockwise eddies. This direction of circulation is preferred and
encouraged by the gravitational field. As buoyancy forces increase through
Gr/Re2 =1/3 to 1 (Figure 4(c) and (d)), the counterclockwise eddies are totally
merged and enhanced while the two clockwise eddies are very much reduced in
size and strength. However, even for Gr/Re2 = 1, the centrifugally driven eddies
are not obscured, indicating that both the driving mechanisms still exist. These
results are in good agreement with those of Dallman and Douglass (1980). For
this set of flow parameters, the isotherms and angular velocity contours remain
almost the same from their characteristic forced convection, concentric circular
pattern (the isotherms are given in Figure 4). Additional insight into the effects
of convective activity on the heat transfer in the annulus can be gained by the
total heat transfer rate and the torque required to rotate the spheres or moment
acting on the spheres. These will be of importance in thermal design application
since for each net heat exchange rate, power (i.e. torque) needs to be supplied in
order to keep the spheres in motion.

Figure 4.
Isotherms and
secondary flow (104ψ)
for Re = 50, ~µ = – 1/3,
η = 0.5, Pr = 1:
(a) Gr/Re2 = 0;
(b) Gr/Re2 = 1/10;
(c) Gr/Re2 = 1/3;
(d) Gr/Re2 = 1
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The total heat flux Θ is found by integrating the gradient weighted by sin θ
(because of the surface area effects) over the surface of the spheres and is given by:

(22)

The total rate of heat transfer for the condition is used to normalize Θ′, where:

In steady flows, the total heat transfer rate across each sphere must be the
same, since dissipation is neglected. In the assumed axially symmetric flow, the
mechanism for convection is observed to be only the stream function as seen in
energy equation (3). Thus, the explanation of the behavior of Θ\Θc as it depends
on the flow parameters is related to that of ψ. Especially, the size of the
convective energy terms (involving T and ψ) is indicated by the product RePr.
As shown in Figures 1 and 3, the magnitude of secondary circulation increases
with Re and Pr. Hence, it is possible for Θ\Θc to increase with increasing Re and
Pr. This is shown in Figure 5 (solid lines).

The torque τ required to rotate a sphere, is found by integrating the shear
stress over the surface of the sphere to obtain:

(23)

Figure 5.
The effect of increasing

Re on the total heat
transfer (––) and the

torque (– –) for ~µ = 2;
η = 0.5; Gr/Re2 = 1 and

Pr = 1
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It is useful to non-dimensionalise the torque by its value for creeping flow, τ0
given by:

(24)

Like the total heat transfer rate, the magnitude of the torque required to rotate
each sphere must be the same in steady state flow. The results for the
dependence of the torque on Re is shown in Figure 5. It is observed that the
general behavior of both Θ\Θc and τ/τ0 is similar.

Lastly, the other limiting case of Gr/Re2, i.e. Gr/Re2 large is studied. This is
done by taking Gr = 1 and Re = 0.5, 0.1, 0.05 and 0.01, i.e. for Gr/Re2 = 4, 100,
4,000, and 10,000. The other parameters are taken as Pr = 1, η = 0.5 and µ∼ = –
1/3. Figure 6 shows the secondary flow streamlines for this set of parameters.
For large values of Gr/Re2, even for µ∼ = – 1/3, the annulus is spanned by single
eddy only, which is generally observed in natural convection dominated flow
only.

5. Conclusion
Parametric spline function approximation is used to study the steady combined
convection in a rotating spherical annulus. The gravitational field acts parallel
to the rotation axis and provides the driving force for buoyancy effects when the
spheres are maintained at different temperatures. In the present approximation
the first order derivatives of the non-linear terms in the governing equations are
eliminated. This gives the advantage over usual finite difference scheme in
which first order upwind differences will be applied to approximate the non-
linear terms. The present approximation gives second order accuracy.

There are five dimensionless parameters governing the flow and heat
transfer in the rotating annulus. The ratio of radii η = R1/R2 is fixed as 0.5
throughout the calculations. The ratio of angular velocities of the spheres µ∼ =
ω2/ω1 as well as the other parameters Re, Gr, Pr affect the nature of the
secondary flow and heat transfer rate. Positive values of µ∼ cause a single eddy
pattern while the negative values result in double eddy patterns. The secondary
flow and heat transfer rate increase with increasing Re. The Grashof number is
an indicator of the effect of buoyancy forces and appears in the ratio Gr/Re2.
The forced convection case is given by Gr/Re2 = 0 and in this case µ∼ < 0 causes
the equatorial symmetry in secondary flow streamline pattern. Increasing the
Prandtl number results in a slightly retarded secondary flow and causes locally
larger temperature gradients. This results in larger total heat transfer rates. It is
also observed that the torque required to rotate the spheres increases with
increasing Re, Gr/Re2, Pr.
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